On Commuting Matrices in Max Algebra and in Classical Nonnegative Algebra
نویسنده
چکیده
This paper studies commuting matrices in max algebra and nonnegative linear algebra. Our starting point is the existence of a common eigenvector, which directly leads to max analogues of some classical results for complex matrices. We also investigate Frobenius normal forms of commuting matrices, particularly when the Perron roots of the components are distinct. For the case of max algebra, we show how the intersection of eigencones of commuting matrices can be described, and we consider connections with Boolean algebra which enables us to prove that two commuting irreducible matrices in max algebra have a common eigennode.
منابع مشابه
On Some Properties of the Max Algebra System Over Tensors
Recently we generalized the max algebra system to the class of nonnegative tensors. In this paper we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverse of tensors is characterized. Also we generalize the direct product of matrices to the direct product of tensors (of the same order, but may be different dimensions) and i...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملMax-Plus algebra on tensors and its properties
In this paper we generalize the max plus algebra system of real matrices to the class of real tensors and derive its fundamental properties. Also we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverses of tensors is characterized.
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملOn visualization scaling, subeigenvectors and Kleene stars in max algebra
The purpose of this paper is to investigate the interplay arising between max algebra, convexity and scaling problems. The latter, which have been studied in nonnegative matrix theory, are strongly related to max algebra. One problem is that of strict visualization scaling, defined as, for a given nonnegative matrix A, a diagonal matrix X such that all elements of X −1 AX are less than or equal...
متن کامل